
Facet Annotation Using Reference Knowledge Bases
Riccardo Porrini∗

Mia-platform
Milan, Italy

riccardo.porrini@mia-platform.eu

Matteo Palmonari
DISCo, University of Milan-Bicocca

Milan, Italy
palmonari@disco.unimib.it

Isabel F. Cruz
ADVIS Lab, Computer Science Dept.,

University of Illinois at Chicago
Chicago, Illinois, United States

isabelcfcruz@gmail.com

ABSTRACT
Faceted interfaces are omnipresent on the web to support data ex-
ploration and filtering. A facet is a triple: a domain (e.g., Book), a
property (e.g., author , lanдuaдe), and a set of property values (e.g.,
{Austen,Beauvoir ,Coelho,Dostoevsky,Eco,Kerouac, Sskind, . . .},
{French,Enдlish,German, Italian, Portuдuese,Russian, . . .}).
Given a property (e.g., lanдuaдe), selecting one or more of its values
(Enдlish and Italian) returns the domain entities (of type Book) that
match the given values (the books that are written in English or
Italian). To implement faceted interfaces in a way that is scalable
to very large datasets, it is necessary to automate facet extraction.
Prior work associates a facet domain with a set of homogeneous
values, but does not annotate the facet property. In this paper, we
annotate the facet propertywith a predicate from a reference Knowl-
edge Base (KB) so as to maximize the semantic similarity between
the property and the predicate. We define semantic similarity in
terms of three new metrics: specificity, coverage, and frequency. Our
experimental evaluation uses the DBpedia and YAGO KBs and
shows that for the facet annotation problem, we obtain better re-
sults than a state-of-the-art approach for the annotation of web
tables as modified to annotate a set of values.
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1 INTRODUCTION
A considerable amount of information published on the web, for
example in eCommerce, is accessible through faceted interfaces,
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which let users filter query results and explore the information
space [7, 8, 12, 24, 39]. Figure 1 shows an example of the Ama-
zon user interface to filter books using the property values for
author ({MiaSheridan,LaurannDohner , . . .}) and/or for language
({Enдlish,German, . . .}). In a Comparison Shopping Platform (CSP),
which aggregates different marketplaces, faceted search filters the
relevant information from millions of products of different cate-
gories.

  

Figure 1: Facets that characterize books.

In information science, a facet is a characteristic of a partic-
ular universe of entities, with each characteristic being associ-
ated with a set of possible terms [15]. We use the terminology
property, domain, and values, respectively. We define a facet as
a triple ⟨D,p,V ⟩, where D is the domain (set of entities), p the
property, and V = {v1, . . . ,vn } the set of property values. As an
example, we represent the language facet in Figure 1 as a triple
⟨Book, lanдuaдe, {Enдlish,German, French, . . .}⟩.

Each property-value pair ⟨p,vi ⟩ selects a subset of entities with
valuevi for propertyp, thus supporting a fine-grained and modular
classification within a given domain [15, 25]. For example, the pair
⟨lanдuaдe,Enдlish⟩ can be used to select the books (entities) that
are written in English using the faceted interface shown in Figure 1.
This definition generalizes to a set of values by taking the union of
the sets of entities selected by each of the values.

Well-crafted faceted interfaces enhance user experience [15,
33, 40], which turns into competitive advantage in sectors like
eCommerce. Different theories including facet analysis have been
proposed in information sciences to drive the process of creating
facets [15, 25]. However, creating well-crafted faceted interfaces
for different domains requires considerable manual effort. As a
result, large eCommerce portals still contain a long tail of prod-
uct categories for which domain-specific faceted interfaces are not
defined. Thus, facet extraction algorithms have been proposed to
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automatically extract facets or to assist domain experts in the facet
creation process. These approaches extract and cluster facet values
that are deemed to belong to a common property. Some approaches
extract clusters of facet values for a domain using data analytics
techniques offline [6, 19, 24, 38], while others extract clusters of
facet values from search results [8, 13, 42]. Many facet extraction
approaches provide hierarchical faceted search over large text col-
lections [6, 19, 38, 42], but they are seldom used in eCommerce.

The above approaches are able to extract clusters of facet values
but they do not interpret the facet property. In this paper, we ad-
dress the facet annotation problem, that is, the problem of assigning
a property to automatically extracted sets of values with the same
semantics. The key insight behind facet annotation is that we can
re-use predicates from large structured Knowledge Bases (KBs)
such as DBpedia [16], YAGO [34], Freebase [3], or corporate KBs,
to interpret the meaning of a facet. We consider KBs with entities
classified using types and relational assertions, which use binary
predicates between entities or between entities and literal values.
In these KBs, predicates have both machine-readable semantics,
as provided by web standards like RDF, and human-readable se-
mantics, as provided by natural language labels. The input to the
facet annotation problem is a triple ⟨D, ?p,V ⟩ where ?p represents
an unknown property. Given this input, we want to find a predicate
q from a KB that captures the semantics of the property. For in-
stance, we annotate the properties author and language of Figure 1
with the predicates dbo:author and dbo:language used in DBpedia.
Facet annotation thus consists of evaluating the similarity between
the unknown property and a predicate in a KB. Predicates in the
KB can be ranked by similarity in such a way that the most similar
predicate can be chosen using a fully automatic facet annotation
method or, in a semi-automatic way, a set of the top-k most similar
predicates can be evaluated by domain experts.

Facet annotation problems with input ⟨D, ?p,V ⟩ are relevant
in (at least) two scenarios: facet values are either extracted for a
given domain (e.g., a product category without specific facets in
an eCommerce application [24]) or from search results [13] that
have been filtered by a category (e.g., results for the search "Harry
Potter" restricted to the Book domain). In both scenarios, KB pred-
icates annotate unknown facet properties. We focus on the first
scenario, which has motivated our work. By combining facet ex-
traction [24] and facet annotation we further automate the facet
definition process, and provide an end-to-end solution for the com-
plex task of maintaining and creating facets in a CSP, which can
operate in highly dynamic environments where novel products and
categories appear at a fast pace [11]. In addition, the reuse of prop-
erty URIs from a reference KB enables semantic annotations of
faceted classifications in a CSP using, for example, RDFamarkup [2],
which supports the smart aggregation of product data and seman-
tic search [33, 35]. Finally, vocabulary reuse reduces terminology
entropy and is a key factor to ease semantic data access [29].

Solving the facet annotation problem is challenging because
facet values are ambiguous, their interpretation is highly domain
dependent, and it is difficult to determine which predicates capture
more specifically the semantics of a facet. For example, in Figure 1,
English, German, French, Spanish may refer to the language of a
book or to the nationality of a basketball player. To describe book
authors, the predicate author should be preferred to more general

predicates such as creator. We address these challenges by providing
a representation of the KB that eases the matching of facet values
with relational assertions from the KB, and the matching of the
facet domain with the entity types of theKB. We design a ranking
function that is able to effectively quantify semantic similarity.

The facet annotation problem is related to relation annotation
in web tables [4, 17, 22, 26, 27, 30, 36, 37, 43, 44]. Table annotation
aims to interpret semi-structured tables embedded in web pages by
annotating cells with named entities, columnswith entity types, and
column pairs with predicates representing the relation that holds
between column values (relation annotation). A facet describes a
relation between an entity type (e.g., Book) and facet values, which
is imbalanced when compared with the balanced relation between
a pair of table columns. Although table annotation approaches
can be adapted to work with the imbalanced input of the facet
annotation problem, our approach significantly outperforms such
adaptations by better capturing the similarity between facets and
KB predicates, as we will show in our experiments.

In summary, in this paper we make the following contributions:

• we define the facet annotation problem and its motivation
along with the semantic similarity between a facet and a
predicate from a KB, in Section 2;
• we discuss the similarities and differences between facet
annotation and table annotation and, in particular, relation
annotation, in Section 3;
• we propose a filter and rank facet annotation approachwhich,
given a facet, selects predicates from a KB and ranks them
according to their similarity, in Section 4;
• we provide an extensive evaluation using KBs with differ-
ent characteristics and compare our approach with state-
of-the-art relation annotation approaches adapted to facet
annotation, in Section 5, before concluding the paper in Sec-
tion 6.

2 PROBLEM SETTING
In this section we introduce a motivation scenario for our work,
and define the three main concepts of facets, Knowledge Bases, and
facet annotation, and highlight the intuition behind our approach.

2.1 Motivating Scenario
Our work addresses the needs of domain experts who are in charge
of maintaining classifications, mappings, and facets in a CSP. Au-
tomatic methods that define new facets are helpful for the long
tail of product categories. We have developed an automatic facet
extraction algorithm [24] for a leading CSP in Italy, which could be
used for platforms like Amazon or AliBaba, which have millions of
users worldwide. Given a product category, our algorithm finds
clusters of homogeneous values, each one corresponding to one
facet. The clusters are disjoint, thus making facets orthogonal as
recommended in information science [15]. The clusters are com-
puted by analyzing mutually disjoint terms occurring in thousands
of taxonomies from the local marketplaces whose data is integrated
in the CSP. Domain experts can refine the suggested facet values,
assign a label to the facet property and decide which facets will be
finally included in the CSP. The tool has been used in the produc-
tion environment of the CSP to create new facets for 16 product
categories in about one year (out of 512 product categories).
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Our facet anotation algorithm outputs a ranked list of suitable
predicates for the property of each extracted facet using a reference
KB. Domain experts can use this list to select a suitable predicate
q, which will provide a label and a URI for the facet property.

During the facet extraction process, the relation between the
individual entities (product offers) and the facet values, which come
from local taxonomies, is lost. Thus, when the facet annotation
algorithm is run, the entity-value pairs, similarly to those used in
instance-based relation annotation, are not available. Once facets
are defined, pattern matching is used to reconstruct this relation
and thus support faceted search in the CSP interface. In addition,
entities are usually represented by internal identifiers that cannot be
matched with a reference KB, with offer titles (e.g., Apple iPhone
5C 8 GB Unlocked, Blue) containing noisy descriptions of product
features rather than their clean (standard) names (e.g., Apple iPhone
5C 8 GB). This is the same problem that occurs in facets extracted
with query-driven approaches.

Depending on the domain of interest, the reference KB can be
an open, cross-domain KB like DBpedia, or a proprietary KB
used to describe the products in a CSP. We created a proprietary
KB of the products in the CSP we have worked with. However,
to support a comparative evaluation and the reproducibility of our
results, we use open KBs in this paper.

2.2 Facet Annotation
A Knowledge Base, KB, is a collection of descriptions of enti-
ties, which are classified using types. Adhering to the RDF data
model [18], entities, predicates and types are uniquely identified
by their URIs. Entities are described by assertions (s,q,o), where s ,
q and o are respectively the subject, the predicate, and the object
of the assertion. The subject of an assertion is an entity, while the
object can be either an entity, a literal value (e.g., 2010), or a type.
We distinguish between relational assertions, where the subject is
an entity and the object is either an entity or a literal value, and
typing assertions, where the subject is an entity and the object is a
type. Typing assertions are represented explicitly for entities or can
be derived from typed literals (e.g., "1978-07-20"ˆ̂ xsd:date) [18].

Many KBs, including DBpedia, also use a reference ontology,
which specifies the intensional semantics of types and predicates
using a formal language like OWL. In these ontologies, ontology
classes and datatypes are entity types. However, several KBs also
use complementary classification systems. For example, DBpedia
usesWikipedia categories, whichwe also consider to be entity types.
Types are organized in a subtype graph, which represents a binary
and transitive relation ⪯ that defines a partial order. Therefore if
t ′ is a subtype of t or equivalently more specific than t , then t ′ ⪯ t .
The subtype t ′ of t can be the child of t or any descendant of
t . Each entity e ∈ KB is an instance of one or more types. We
denote by T (e ) the set of types of e , including all their supertypes.
A KB may use more than one type graph (e.g., DBpedia). Both
types and entities are associated with a set of lexicalizations. A
lexicalization is a sequence of natural language tokens that are
associated with a type, or an entity, or a literal value. We denote
by L(t ) and L(e ) the lexicalization of a type t and of an entity e ,
respectively. For instance, for an entity J_R_R_Tolkien wemay have
L(J_R_R_Tolkien) = {“John Ronald Reuel Tolkien”, “J. R. R. Tolkien”}.
The lexicalization of a literal value is the set that contains the value

itself. The extensional semantics of a predicate q is defined by its
extension, that is, every pair (s,o) such that (s,q,o) ∈ KB. Given a
predicate q, its domain Dq and range Rq are defined respectively as
the sets of all the subjects and objects, which occur in the extension
of q.

In a facet f we use Df , pf , and V f to denote respectively its
domain, property, and values. The lexicalization of a facet domain
is the string that denotes it (e.g., “Book”). When the property is
unknown, we write f = ⟨Df , ?pf ,V f ⟩ (denoting, for example, the
output of a facet extraction algorithm). Given the facet f and a
reference KB, the problem of facet annotation consists of finding
a predicate q from the KB, such that the semantics of q is similar
to the semantics of ?pf . Our approach to the annotation of a facet
property consists of building a list of KB predicates ranked by
similarity. It is up to an automatic program or to a user to select
one of them, likely the top ranked one.

2.3 Specificity Driven Semantic Similarity
The similarity of a predicate from aKB to a facet property relies on
three metrics: specificity, coverage, and frequency. The most impor-
tant metric is specificity. We use the example of Figure 2b to explain
its importance.1 The facet values include, for instance, Arthur C.
Clarke, and J. R. R. Tolkien, while the facet domain is Book. The two
predicates author (Figure 2a) and creator (Figure 2c) relate some
books (2001_A_Space Odyssey, The_Hobbit, and Sunjammer) to
J._R._R._Tolkien and/or Arthur_C._Clarke. For each predicate there
are two relational assertions that provide evidence for its similar-
ity to the facet property ?p. However, looking at the extension of
creator in the KB, we realize that the domain of creator includes
not only books but also fictional characters (HAL_9000) and places
(Middle-heart). Instead, the domain of author contains prevalently
books, with BBC_Online being of type Work, a parent of Book.
Thus, the predicate author is a better candidate than creator to
annotate the facet. To determine the best possible predicate, we
need to compare the facet domain with the predicate domain and
the facet values with the predicate range and choose the closest.

Coverage is based on the estimated overlap between the facet
values and a predicate range. A range Rq that contains a large
subset of the facet value setV f provides evidence for the similarity
between q and ?pf .

Frequency is orthogonal to coverage. Given a facet f the more
frequently facet values are connected by a predicate q to instances
from the domain Df , the higher the similarity between q and the
facet property ?pf is. The rationale behind frequency is to favor
predicates that are more frequently used within the KB with re-
spect to the facet domain, for instance favoring predicates like
language over origLanguage.2

Given a facet, we will quantify the specificity, coverage, and fre-
quency of predicates, by looking at their extensional semantics.
Another possibility would be to consider the intensional semantics
of predicates specified in the ontology of theKB and solve the facet
annotation problem as an ontology matching problem [5, 10, 31].
However, facet properties have no attached semantics and thus
there is nothing that can be directly compared to the semantics of

1The example is from DBpedia (version 3.9) with some simplifications.
2Both of them are used in DBpedia to denote the original language of a book.
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Domain Range 
Universe Universe 

Intensional semantics Extensional semantics 

Person BBC_Online 

Work 

BBC 

author 

2001_A_Space_Odyssey 
Arthur_C._Clarke 

... 
J._R._R._Tolkien The_Hobbit 

(a) A specific predicate w.r.t. books.

Book 

Agatha Christie 
Arthur C. Clarke 
Paulo Coelho 
Charles Dickens 
J. K. Rowling 
J. R. R. Tolkien 
Anna Sewell            

 ... 

?p 

(b) A facet describing authors of books.

creator 

Domain Range 
Universe Universe 

Person 

... HAL_9000 

Sunjammer 
Arthur_C._Clarke 

J._R._R._Tolkien 

The_Hobbit 

Middle-heart 

Intensional semantics Extensional semantics 

(c) A generic predicate w.r.t. books.

Figure 2: An example that illustrates the difference between specific and generic predicates.

the predicate. Also, facet domains refer to specific types whereas
facet values refer to entities (e.g., the entity Arthur_C._Clarke) or
literals (e.g., 2010). Finally, the semantics of predicates is often un-
derspecified in largeKBs: for several predicates, the ontology does
not constrain the subjects and/or objects related by such predicates
to belong to specific types [1, 32]. For these reasons, the intensional
approach is not directly applicable to the facet annotation problem.

3 RELATEDWORK
Facet annotation has similarities with web table annotation. Tables
often include a subject column containing the subject entities de-
scribed by the table [36, 37, 43]. The remaining columns contain
entities or literals that are in a relation with the subject entities or
with entities appearing in other columns. Entities, types, or rela-
tions are annotated using structured KBs, such as YAGO [17, 30],
DBpedia [26, 44], the combination of the two [22], Freebase [43],
Probase [37], or custom KBs mined from web pages [36].

Facet annotation is closer to relation annotation that concen-
trates on non-subject columns, hence, in what follows, we focus on
those approaches that annotate non-subject columns [17, 22, 36, 37,
43], not on those that do not [26, 30, 44]. However, as mentioned in
Section 1, facet annotation is imbalanced and relation annotation is
balanced. Relation annotation relies heavily on the analysis of the
reciprocal distributions of values in different columns on the same
row [36, 43]. Due to the imbalanced specification of facets, this kind
of information is not available when annotating the facets. Still, be-
cause we leverage the extensional semantics of predicates in a KB
similarly to what is done for relation annotation [17, 22, 36, 37, 43],
we discuss the adaptability of relation annotation approaches to
facet annotation. As discussed in a recent article [27], relation an-
notation is also similar to instance-based ontology matching when
applied to properties [31]. Our considerations about relation anno-
tation also apply to instance-based property matching.

The KB of Venetis et al. [36] is a custom database of mined
relations. They use a maximum likelihood method for relation an-
notation by computing the frequencies within the KB of all pairs
of values in the same row of the table, without considering type
information. Hence, they do not quantify the specificity of a predi-
cate with respect to an entity domain, which is crucial for a facet
annotation algorithm. We compare experimentally our approach
with their maximum likelihood method as adapted to facet anno-
tation and show that ours is more effective. Wang et al. [37] use
the Probase probabilistic KB [41], built similarly to the KB of
Venetis et al., to annotate web tables. Their approach depends on
the probabilstic model used in Probase, while we rely solely on
types and relational assertions, which are present in any KB.

TableMiner [43] annotates tables with entities and types using an
iterative refinement process, and, after this process, with predicates,
using Freebase as KB. It uses contextual information extracted
from the web page that contains the table (e.g., table caption, sur-
rounding text, Microdata annotations), and the interdependence
among columns. However, we lack contextual information in our
facet annotation setting. The interdependence among table columns
was leveraged also in earlier approaches, which perform collective
inference to jointly compute the optimal annotations for different
columns [17, 22]. However, facets lack the structure of tables.

Ritze et al. [28] first disambiguate values by matching them to
entities in the KB. Then they match pairs of those disambiguated
values with candidate predicates. In turn, the matched predicates
are used to refine value disambiguation in an iterative process. Value
pairs are not available in the imbalanced definition of the input facet,
whichmeans that theirmethod has to be adapted to facet annotation.
Ranking of candidate predicates is based on weighted majority
voting, where weights are based on matching scores computed
between the values in the table and the entities in the KB that are
linked to them. The adaptation of this principle to our imbalanced
representation becomes similar to the evaluation of (weighted)
frequency, which is only one of the three measures we use.

Pham et al. [23] learn the semantic labels of table columns. Se-
mantic labels are represented by pairs ⟨class,predicate⟩, where the
class indicates the type of the subject entities that are in a relation
with the values in the column. They evaluate the similarity between
the column and KB predicates by comparing the respective lists
of values (textual and numerical), and the column header with the
predicate names. The computed similarity scores are used as fea-
tures in a Logistic Regression classifier. While we also compute
the similarity between a facet and a predicate by comparing lists
of values, we cannot use anything similar to the column header,
which is shown to be important for the classifier. Finally, while
their approach is supervised, our approach to facet annotation is
unsupervised.

4 FACET ANNOTATION
We may consider a relational assertion (s,q,o) ∈ KB as positive
evidence of the similarity between a facet property f and q if: (1) s
is an instance of the same type described by the facet domain Df ,
and (2) o is equal to a facet valuev ∈ V f . However, it is also the case
that the facet domain and the facet values must be matched with
types and predicate objects from the KB. Furthermore, we cannot
assume that the KB completely covers the domain of knowledge
conceptualized by f . In this situation, it may be that the KB only
partially represents the domain of knowledge conceptualized by
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creator 

R
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ki
ng

 

Book 

Work 

Thing 

Agent 

Person 

FantasyNovels 

FantasyBooks 

Types 
(DBpedia classes) 

FictionalComputers 

2001_A_Space_Odyssey 

creator 
HAL_9000 Arthur_C._Clarke 

author 

The_Hobbit J.R.R._Tolkien 
author 

Knowledge Base 

Relational assertions 

<{Book, Work, ...},  
  {Person, Agent, ...}, 
  {book, work, fantasy, novel, ...},  
  {j, r, r, tolkien}> 

... 

FictionalCharacter 

Book 
Arthur C. Clarke 
Paulo Coelho 
J. R. R. Tolkien 
           ... 

?p 
author 

<{Book, Work, ...},  
  {Person, Agent, ...}, 
  {book, work, fantasy, novel, ...},  
  {arthur, c, clarke}> 

<{Book, Work, ... },  
  {Person, Agent, …},  
  {book, work, short, story, ...},  
  {arthur, c, clarke}> 

... 

Filtering 

<{Book, Work, ...},  
  {Person, Agent, ...}, 
  {book, work, fantasy, novel, ...},  
  {j, r, r, tolkien}> 

... 
creator 

... 

author 

creator 

Facet 

... 

Types 
(wikipedia categories) 

author 

FictionalObjects 

... 

Predicates’ signatures  

<{FictionalCharacter, Person, ...},  
  {Person, Agent, …},  
  {fiction, charact, person, agent, ...},  
  {arthur, c, clarke}> 

<{Book, Work, ... },  
  {Person, Agent, …},  
  {book, work, short, story, ...},  
  {arthur, c, clarke}> creator 

creator 

Sunjammer 

Middle-heart 
creator 

CORRECT-COMPLETE NEW EXAMPLE 

Figure 3: The Facet Annotation process.

a facet (i.e., some book authors may not correspond to any entity
in the KB). Thus, we cannot consider it as a source of negative
evidence whenever the facet domain cannot be matched to any
KB type, or some facet values cannot be matched to any object.
For this reason, our approach relies on positive evidence only.

Our facet annotation approach is depicted in Figure 3 and it
consists of two distinct phases: predicate filtering and predicate
ranking. Given a facet f , we first match the facet domain and the
facet values to (predicate) signatures, which provide representa-
tions of the extensions of the predicates derived from the relational
assertions in the KB. The signature of a pair (s,o) lists the subject
types, the object types, the lexicalization of the subject type and the
lexicalization of the object, thus supporting comparison with the
imbalanced specification of a facet. The result of the filtering phase
is a set of matching signatures for each KB predicate q, which we
refer to as the extensions of q induced by f . In the ranking phase,
we analyze the non empty extensions of predicates induced by f
in order to quantify the degree of similarity between a predicate q
and a facet f , adhering to the specificity, coverage, and frequency
principles described in Section 2.

4.1 Predicate Filtering
A signature δ (s,o) is an abstract and lexicalized representation of a
pair (s,o) that belongs to the extension of a predicate q. It is abstract
as it includes all the types of the subject s as well as the types of the
object o. It is lexicalized as it includes the lexicalization of o as well
as the lexicalization of all the types of s . Lexicalizations of entities
and types are extracted from URIs and literal values of the rdfs:label
property. More formally, a signature δ (s,o) is defined as

δ (s,o) = ⟨T (s ), T (o), L
T (s ), L(o)⟩ (1)

where T (s), T (o) are the set of types of the subject and the object,
respectively, and L(o) is the lexicalization of the object. Special
attention must be given to the set of subject types lexicalizations
LT (s ) =

⋃
t ∈T (s ) L(t ), which is defined as the union of the lexical-

izations of all the types of the subject. A signature explicitly records
the co-occurrence of the subject and object types. Signatures are
indexed and stored in an inverted index, so as to support the filter-
ing phase, where predicate extensions are selected by matching the
facet with the signatures.

We represent the extension of a predicate q, denoted by ∆q , as
the set of extracted signatures δ (s,o) for that predicate

∆q = {δ (s,o) | (s,q,o) ∈ KB} (2)

To collect the evidence needed to evaluate the similarity between a
given facet property ?pf and predicates in theKB and to filter out
irrelevant predicates, wematch f with the signatures. Our approach
is based on the combination of two different matching functions: for
the facet domain, d-match, and for the facet values (range), r -match.
The d-match function selects the signatures whose subject types
match the facet domain. In order to accomplish this task we consider
the lexicalizations of the subject types LT (s ) and compare them
with the lexicalization of the facet domain L(Df ). Orthogonally, the
r -match function selects those signatures whose object matches at
least one facet value. We then combine d-match and r -match so as
to select the extension ∆

f
q induced by f , which is defined as the

signatures whose subject types match the facet domain and the
object matches at least one facet value

∆
f
q = {δ (s,o) ∈ ∆q | d-match( f ,δ (s,o) )

∧ r -match( f ,δ (s,o) )}
(3)

When ∆fq = ∅, we can conclude that f and q are not similar, because
there is no evidence in KB of their similarity, and thus we can
exclude q from the subsequent predicate ranking phase.

In the filtering phase, we do not try to disambiguate facet values
using the KB entities and some entity linking algorithm for a
number of reasons. First, we seamlessly process facet values that
contain entities and literal values, such as dates or numbers. Second,
entity linking algorithms are usually optimized for text [21], while
algorithms tailored for tables use table rows as context to support
disambiguation [9]. We have plain sets of values, which would
provide little context to support disambiguation. Our approach
smooths the impact of possibly incorrect matches found in the
filtering phase by collectively considering the evidence coming
from all matches collected for every value.

4.2 Predicate Ranking
In the predicate ranking phase, we encode all the principles de-
scribed in Section 2 (i.e., specificity, coverage, frequency) into a set of
scores that is aggregated into an overall semantic similarity score.
Finally, we rank the predicates accordingly.

Specificity. We capture the specificity of a predicate q with re-
spect to facet f by comparing the extension ∆q with the extension
∆
f
q induced by f . If ∆fq is close to ∆q , we may consider the se-

mantics of q to be somehow preserved when annotating f with q.
In principle, to capture this closeness, one may apply a majority
voting approach, that is, the more ∆

f
q and ∆q overlap (i.e., more
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votes for q), the more we can consider q similar to f . However, this
majority voting approach will likely fail to capture the specificity
of q with respect to f . The cardinality of V f is usually several or-
ders of magnitude smaller than the cardinality of Rq , thus making
the direct comparison of the two extensions not discriminative
enough. Moreover, ∆fq is the result of a matching algorithm and it
may include signatures resulting from false positive matches. To
account for these issues, we consider types instead of signatures.
We compare the sets of subject and object types extracted from the
signatures in ∆q with the ones extracted from signatures in ∆

f
q . We

follow the intuition that the more these sets are similar, the more
∆
f
q is close to ∆q and thus the semantics of q is preserved.
Given a generic extension ∆, we form the subject type set D[∆]

by selecting the types of all the subjects in the signatures of ∆. More
formally, the subject type set D[∆] of an extension ∆ is defined as

D[∆] = {t | ∃δ (s,o) ∈ ∆, t ∈ T (s ) ∧ ∄t ′ ∈ T (s ), t ′ ⪯ t } (4)

D[∆] does not contain every type of every subject, but only the
types of every subject that are minimal. A type t is minimal for an
entity e if there are no other types in T (e ) that are subtypes of t .

By considering the minimal types only, D[∆] captures the speci-
ficity of the domains of ∆, as D[∆] contains the most specific types
that are used to categorize the subjects of the signatures from ∆. We
then capture the domain-specificity of a predicate q with respect to
f , d-spec ( f ,q), by comparing the subject type sets extracted from
the two extensions ∆q and ∆

f
q . We consider q specific with respect

to f if their extensions contain the same set of specific subject types
and compare D[∆q] with D[∆fq ] using the well-known weighted
Jaccard set similarity

d-spec ( f ,q) =
w-card (D[∆q ] ∩ D[∆

f
q ])

w-card (D[∆q ] ∪ D[∆
f
q ])

(5)

Thew-card (for weighted cardinality) function in Equation 5 com-
putes the weighted sum of the depths of the types t ∈ T in the
subtype graph, each depth being weighted by the inverse of the
maximum depth of the descendants of t

w-card (T ) =
∑
t ∈T

depth(t )

max
t ′∈DES[t ]

depth(t ′)
(6)

where DES[t] = {t ′ | t ′ ⪯ t }. The rationale of using this scaled
depth is: (1) to ensure values in the [0, 1] interval, and (2) to further
bias the function d-spec towards the most specific subject types.

We compute also the range-specificity of q with respect to f ,
r -spec ( f ,q), by adapting the d-spec function to consider the object
types instead of the subject types. Similarly to Equation 4, we define
the set R[∆] of object types extracted from a generic extension ∆ as

R[∆] = {t | ∃δ (s,o) ∈ ∆, t ∈ T (o) ∧ ∄t ′ ∈ T (o), t ′ ⪯ t } (7)

We thus adapt Equation 5 accordingly

r -spec ( f ,q) =
w-card (R[∆q ] ∩ R[∆

f
q ])

w-card (R[∆q ] ∪ R[∆
f
q ])

(8)

Coverage. We capture the coverage of a predicate q over a facet
property f , cov ( f ,q) by computing the fraction of facet values for
which there exists at least one matched signature δ (s,o) ∈ ∆

f
q

cov ( f ,q) =
|{v ∈ V f | ∃δ (s,o) ∈ ∆

f
q }|

|V f |
(9)

Intuitively, a higher coverage is estimated for those predicates
whose objects cover larger subsets of the facet value set V f .

Weighted frequency. Specificity and coverage do not take into
account the cardinality of the extension ∆

f
q , where a large exten-

sion provides evidence for q and f being similar. To capture this
principle, we introduce the weighted frequency, freq( f ,q)

freq( f ,q) =
1

|V f |

∑
δ (s,o ) ∈∆

f
q

|LT (s ) ∩ L(Df ) |

|LT (s ) ∪ L(Df ) |
(10)

Intuitively, we count signatures in ∆
f
q , weighting them considering

the similarity between the lexicalization of the facet domain L(Df )
and the lexicalization of all the subject types LT (s ). Our intuition
is that the more similar L(Df ) and LT (s ) are, the higher quality of
the evidence provided by the signature. In Equation 10 the quality
of each signature ∆fq is computed as the Jaccard similarity between
the two lexicalizations. The factor 1/|V f | is introduced to scale
down the resulting weighted frequency by the number of the facet
values (i.e., the cardinality of V f ).

The idea of evaluating specificity and frequency on top of the
matches found for facet values and domain using domains and
ranges ofKB predicates is somewhat similar to the idea behind the
Information Retrieval SoftTFIDF measure. However, when used to
compare two documents ofm and n words, respectively, SoftTFIDF
computes string similarity betweenm · n pairs of words to find the
most similar word pairs. SoftTFIDF is thus effective in comparing
short text fragments like entity names [20], but is not suitable for
the comparison of longer text fragments such as those that would
encode facet values and, in particular, predicate ranges (which may
contain several thousand values). In addition, our specificity and
frequency measures go beyond value comparison, by considering
minimal types.

Final Rank Computation. We aggregate the scores that cap-
ture the specificity, coverage, and frequency into a single, global
similarity score, expressed by the domain and range comparison
function for a predicate q and a facet f , drc ( f ,q). The scores have
values in the [0, 1] interval, with the exception of the weighted freq
score. The freq score may in principle have a huge impact on the
overall score because it provides positive evidence captured in an
unbounded way. As a result, it can possibly skew the overall score.
Thus, to make all the scores more comparable we smooth them
using a logarithmic function. The lower bound of each score is one
and then we multiply all the smoothed scores together, resulting
in a similarity score that is a non-decreasing monotonic function
with no upper bound and a lower bound equal to 1

drc ( f ,q) =
(
1 + ln(d-spec ( f ,q) + 1)

)
·(

1 + ln(r -spec ( f ,q) + 1)
)
·(

1 + ln(cov ( f ,q) + 1)
)
·(

1 + ln( f req( f ,q) + 1)
)

(11)
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The +1 inside the logarithm ensures each score is greater or equal
to zero, while the +1 outside the logarithm enforces 1 as the lower
bound. Intuitively, we let each score contribute by a positive factor,
as we only consider positive evidence.

5 EVALUATION
In our experiments, we annotate facets with predicates from DBpe-
dia and YAGO KBs. We compare our ranking approach with the
majority voting model and the maximum likelihood model [36] , as
adapted to the facet annotation problem. We rely on two different
gold standards for the annotation: one that is manually created for
DBpedia and another one that is the state-of-the-art for YAGO and
was used in the evaluation of table annotation [17].

We implemented our approach along with the baseline algo-
rithms using the Java programming language and the Lucene li-
brary.3 The code repository, the gold standards with which we
compared our approach, and the experimental results provided in
this section are publicly available.4

Table 1: Gold Standards’ statistics.

Facets Predicates
# Domains Accurate Correct

dbpedia-numbers 8 7 ∼4 ∼19
dbpedia-entities 31 13 ∼7 ∼7

dbpedia 39 13 ∼3 ∼9

yago-explicit 83 17 1 -
yago-ambiguous 83 10 1 -

5.1 Gold Standards
Knowledge Bases. DBpedia (version 3.9) contains 753958 types,
53195 predicates and more than 96M relational assertions. In our
experiments, we include two type graphs: one extracted from the
DBpedia ontology, and the other extracted from DBpedia categories.
DBpedia categories are extracted from Wikipedia categories and
are known to be noisy and low quality [14]. The second KB we
consider is YAGO (version: 2008-w40-2),5 which includes 184512
types, 89 predicates and more than 5M relational assertions.

The datasets used for the evaluation consist of two disjoint sets
of facets manually annotated with predicates from DBpedia and
YAGO, respectively. In the case of DBpedia, we found that there
exists more than one predicate that is similar to the facet, while
in the case of YAGO there is only one similar predicate for each
facet. Statistics about these two gold standards are summarized in
Table 1.

DBpedia Gold Standard. Following the methodology proposed
for the creation of gold standards for table annotation tasks [22, 36,
43], we manually collected 39 facets from the web from different
domains: 32 facets were collected from Wikipedia (non infobox)
table columns, and 7 were collected from IMDB, eCommerce, and
sports statistics websites. For each facet, we selected from DBpe-
dia all the predicates whose objects match at least one facet value,
without considering facet domain matching. We presented the gold
standard to a total of 10 human annotators, who rated the similarity

3http://lucene.apache.org/
4https://github.com/rporrini/facet-annotation
5We use an old version of YAGO because the state-of-the-art annotated gold standard
uses this version [17].

of each predicate using a Likert scale from 0 to 2 (0 = incorrect, 1 =
correct, 2 = accurate). We presented only a portion of the gold stan-
dard to each annotator in order to reduce the cognitive workload,
ensuring that each predicate was rated by at least 3 annotators. We
aggregated all the judgements, manually resolving inconsistencies.
We report an average correlation of 0.42 between annotators using
Spearman’s rank correlation coefficient, because we have a reason-
ably large sample size. We then partitioned the gold standard into
two disjoint sets of facets: dbpedia-numbers (i.e., facets whose
values are digits) and dbpedia-entities (i.e., facets whose values
are strings).

YAGO Gold Standard. The gold standard for the YAGO dataset
has been used to evaluate several table annotation algorithms [17]
and consists of tables where cells have been annotated with entities,
columns with types and column pairs with predicates. We derived
90 facets from the same number of table columns that are involved
in at least one relation annotation, considering the lexicalization of
the annotated type for the corresponding subject columns to be the
facet domain, when present. Among these 90 facets, 7 had no type
annotation for the corresponding relation’s subject column and thus
were discarded. We ended up with 83 annotated facets. There are
no numeric facets. We then created two versions of the YAGO gold
standard. Within the yago-explicit gold standard we used the local
name of types (extracted from the type URI) as facet domains (e.g.,
“wikicategory-American-science-fiction-novels”). By considering
the local name of types, weminimize ambiguity in the facet domains.
In the yago-ambiguous gold standard, we used more general (and
thus, ambiguous), lexicalizations for facet domains, such as “novels”.

5.2 Algorithms
Most of the state-of-the-art table annotation approaches have been
compared with the majority voting based model [17, 26, 36] (MAJ).
Given f , the majority based approach selects all the predicates that
match f and ranks them by frequency. The maximum likelihood
basedmodel [36] (MAX) is based on the application of themaximum
likelihood hypothesis. Given a facet f , the most similar predicate
is the one that maximizes the conditional probability of occurrence
of the predicate given the facet values V f , that is,

ml (q, f ) = Ks
∏
v ∈V f

Pr[ q | v ]
Pr[ q ]

, (12)

where Ks is a normalization parameter that is chosen so that∑
qml (q, f ) = 1. Pr[ q | v ] and Pr[ q ] are computed over the KB

using the same parameters but predicate frequency instead of the
original scoring function, which was specifically defined for a data-
base of mined relations. We refer to the original paper [36] and our
code repository for further details.

The approaches based on majority vote and maximum likelihood
used in table annotation leverage the quasi-relational structure of
a table. When annotating a pair of columns, they match values
in the first column to predicate subjects and values in the second
column to predicate objects. For a fair comparison, we compare our
predicate ranking function, the domain and range comparison func-
tion, henceforth denoted by DRC, with the baselines applied to the
extensions ∆fq induced by the facets, computed by matching both
the facet domain and the facet values to the relational assertions.
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Figure 4: Evaluation of DRC over the DBpedia dataset.
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Figure 5: The effect of the specificity score on the dbpedia-
numbers dataset.

5.3 Evaluation Measures
In our experiments we compare the effectiveness of DRC, MAJ, and
MAX using three different measures: Normalized Discounted Cu-
mulative Gain (nDCG), Mean Average Precision (MAP), and Mean
Reciprocal Rank (MRR). The nDCG measure compares the ranking
of predicates established by one algorithm with the ideal ranking
derived by ratings specified by human annotators. Intuitively, a
higher nDCG value corresponds to a better agreement between
the results proposed by the facet annotation approach and an ideal
ordering obtained from human annotators. nDCG provides a fine-
grained measure of the effectiveness of DRC and the baselines, at
different ranks, for both the DBpedia and YAGO datasets.

The MAP measure is computed by averaging the precision cal-
culated at the rank of each correct or accurate predicate in P (as
judged by human annotators) for each facet and finally averaged
over all the facets. MAP takes into account the fact that there ex-
ists more than one similar predicate for each facet, and provides a
single valued, coarse-grained measure of effectiveness. We use it
for comparison with the DBpedia datasets. The MRR measure is an
adaptation of the MAPmeasure to facets for which there exists only
one predicate. MRR is defined as the multiplicative inverse of the
rank of the accurate predicate (if present, 0 otherwise), averaged
over all the facets. Intuitively, MRR captures to which extent a high
rank is given by the algorithm to the (only) similar predicate. We
use it for comparison with the YAGO gold standard.

5.4 Experiments with DBpedia
We compare DRC with the baselines with respect to MAP com-
puted over the top 20 most similar predicates. We do not make a
distinction between predicates judged to be correct or accurate by
human annotators, because we want to ensure that DRC is able
to discriminate between similar and not similar predicates in a

Boolean fashion. The experimental results are depicted in Figure 4a.
DRC consistently achieves better effectiveness in terms of MAP
over all the DBPedia datasets. Figure 4b gives an overview of the
nDCG obtained at different ranks. DRC is more effective than MAJ
and MAX in capturing the similarity at all ranks from 1 to 20,
achieving a maximum nDCG of 0.81 (at rank 1), compared to 0.77
of MAJ and 0.76 of MAX. The interesting observation is that the
more naive MAJ baseline performs better than the MAX baseline,
at all ranks. These results are in agreement with those provided
by the authors of MAX [36]. In their work, they composed their
approach with the majority based approach (MAJ) to achieve better
results. However, both MAJ and MAX are less effective than DRC
in capturing the semantic similarity between facets and DBpedia
predicates. Our interpretation for this behavior is that the baselines
are less robust to ambiguity introduced by the imbalanced speci-
fication of facets, which potentially results into a high number of
false positive matches between the facet and predicate instances.
The baselines, which are not explicitly designed to cope with this
distinctive characteristic of facets, are biased towards predicates
whose extension induced by the input facet has a higher cardinal-
ity, even if it contains false positive matches. In contrast, DRC is
less sensitive to false positive matches as frequency is weighted
by the similarity between the facet domain and the subject types.
For example, the top ranked predicate computed by DRC for the
facet ⟨Airports, ?p, {Milan,Rome, . . . ,Turin}⟩ is cityServed, which
is ranked only in fourth place by both MAJ and MAX.

The observation about the robustness of DRC on the dbpedia-
numbers dataset with respect to facet ambiguity is confirmed by
nDCG (see Figure 4c). The semantics of numerical values is intrin-
sically ambiguous and is highly context dependent, as exemplified
by the facet ⟨BasketballPlayers, ?p, {1948, 1949, . . . , 2012}⟩. This
facet has been extracted from a web page that lists NBA basketball
players by their draft year. The semantics of this facet is ambigu-
ous because, besides the draft year (i.e., the year where a player
starts playing professionally), it may represent, for example, the
birth or retirement year. However, the draft year is one of the most
specific predicates for basketball players, while birth or retirement
year characterize people or athletes in general. In this setting, the
specificity scores implemented by DRC are able to boost predicates
such as draftYear, which is used in few categories of sportspeople,
over more generic ones such as birthDate. Instead, MAX and MAJ,
which do not capture the specificity of predicates, assign a higher
rank to predicates such as birthDate or deathDate.
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Figure 6: Evaluation of DRC over the YAGO dataset.

The effect of the specificity score on the performance of DRC on
the dbpedia-numbers dataset is shown in Figure 5. We compare
three different versions of DRC in terms of nDCG: the first one
uses only the frequency score, freq, the second one uses both the
frequency and the coverage score, freq+cov, while the third one
is the complete DRC ranking function. Experimental results high-
light the importance of capturing the specificity of predicates. The
specificity score is crucial to providing high quality annotations
for numeric facets. We also study the effect of the specificity score
over the dbpedia-entities dataset and found that it provides an
observable, though slight, improvement of the effectiveness. This
was expected, as strings are less ambiguous than numerical values.
We report a higher nDCG at all ranks for DRC compared with freq
and freq+cov scores, with an average improvement of around 4.5%
and 5%, respectively.

5.5 Experiments with YAGO
We compare DRC with the baselines with respect to MRR com-
puted over the top 5 similar predicates of the YAGO dataset. In-
sights from the previous experiments are further confirmed: the
most similar predicate for facets is generally ranked higher by
DRC when compared with the baselines, as shown in Figure 6a.
We also compare DRC with the baselines in terms nDGC (Fig-
ures 6b and 6c). Our approach is able to provide a better charac-
terization of the similarity between a facet and predicates also in
the presence of a single, well defined type hierarchy and a much
smaller number of possibly similar predicates (89 vs 53195 of the
DBpedia dataset), making it suitable also for the annotation of
facets with precision oriented KBs, such as domain specific KBs.
DRC achieves better results at each rank. We observe that the
most noticeable improvement over the baselines is obtained at
rank 1. This is crucial in order to support a fully automatic facet
annotation process. An example of such capability is provided
by the facet ⟨Actors, ?p, {Blondie Hits the Jackpot, Charlie Chaplin
Cavalcade , . . . , Trouble Chasers}⟩. For this facet, the top ranked
predicate computed by DRC is actedIn, which is ranked at the sec-
ond position (after created) by MAJ and ranked at the third position
(after livesIn and created) by MAX.

We have also experimentally observed that the specificity score
have little impact on the effectiveness of DRC on the YAGO dataset
(we omit the plots for lack of space). This can be explained by two
observations: (1) The YAGO dataset includes no numeric facets,
and thus we expected the specificity score to have little impact on
quality in this particular dataset, and (2) The type graph provided
by YAGO is deeper and more specialized than the DBpedia type

graphs. As a result, the subject and object type sets extracted from
the extension of predicates are more sparse than the ones that
are extracted from extensions induced by facets, thus making the
specificity score less discriminative.

6 CONCLUSIONS
Facet data is omnipresent on the web. In this paper we address the
problem of annotating facets with a predicate from a Knowledge
Base. Our approach is capable of handling the intrinsic ambigu-
ity of facets by annotating them with the most specific predicates
with respect to the facet domain. Experiments conducted by an-
notating facets with two large Knowledge Bases (DBpedia and
YAGO) confirm the effectiveness of our approach. Using our facet
annotation approach, we can assist domain experts in charge of
managing facets in large and dynamic data spaces in the task of
labeling and lifting facets into a semantic web framework, that is,
of transforming lexical data into semantic-rich data.

We will investigate further this work in the context of geospatial
healthcare applications taking advantage of earlier results [4]. We
also foresee at least two more directions for future work. The first
one consists of further refining our definition of the specificity of a
relation with respect to a facet domain, when dealing with Knowl-
edge Bases with a deep subtype hierarchy. Another interesting
extension is the adaptation of our approach to solving relation an-
notation problems in particular constrained settings. For example,
when the subjects of a relation cannot be matched with a reference
Knowledge Base, the relation annotation problem becomes similar
to the facet annotation problem addressed in this paper. Thus, we
plan to incorporate our approach in ASIA, a table annotation tool
that we are developing in the context of the EU funded projects
EW-Shopp6 and EuBusinessGraph.7
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